
Tachyons ∗

1. Causality Principle.
In section 31 we have shown that Lorentz transformations (9.13) are consistent

with the constancy of the limiting velocity c in all inertial reference frames and
the causality principle. The transformations (9.13) make sense for V < c only (V
being the velocity of the reference system K′ with respect to K) since at V = c the
denominators vanishes, and at V > c they are imaginary. The causality principle
requires the signal velocity be less than c. Therefore if the moving particle is regarded
as a signal, its velocity v can not be greater than c. The analysis of the notion of
signal, and of the process of emitting/sending and receiving signals, shows that the
causality principle is of a thermodynamical nature and can be related to the second
law of thermodynamics (the law of entropy increase) (this result is due to Y.P.
Terletzky, Doklady Akad. Nauk SSSR, vol. 133, p. 329, 1960; see also [21]). In such
a case the violation of the causality is admissible on the microscopic level, and on
the macroscopic level too, but only as a random �uctuation.

After the above generalized comprehension of the causality principle (after 1960)
a considerable number of papers and books appeared, dedicated to the possible exis-
tence of particles, moving faster than the light in the vacuum, and to their mechanics.
Later the term tachyons has been adopted for such particles. For particles moving
with subluminal velocities the term bradyons was coined, and particles moving with
velocity of light c became known as luxons. The interest about tachyons increased
in the last years in connection with the di�culties in explaining certain experimen-
tal results of nuclear processes accompanied with neutrino emission (e.g. β-decay of
tritium 3H −→ 3He +e− + ν̄e). The explanation could be possible, if one supposes
that the neutrino is a tachyon with space-like 4-dimensional momentum (see e.g.
the paper J. Ciborowski and J. Rembielinski, European Phys. Journal C, v. 8, p.
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157, 1999 and references therein). Results are reported about electromagnetic pulses
with group velocity greater than c (see e.g. G. Kurizki et al, Opt. Spectrosc., v. 87,
p. 505, 1999).

2. Lagrange function, energy and momentum of tachyon.
The tachyons can be described theoretically as relativistic particles with mass m

and Lagrange function (LF) of the form

L = µc2γ̄(v), γ̄(v) =
√

v2/c2 − 1, (9.54)

where µ is a positive constant of mass dimension (so that L is of energy dimension),
and v � the tachyon velocity, v ≥ c. With this FL the action S =

∫
Ldt is a relativistic

invariant (scalar), since Ldt is invariant. Indeed, let us consider expression of the
same form in K′: L′dt′ = µc2γ̄(v′)dt′. For simplicity we consider the motion along
the OX axis and the special Lorentz transformations (9.13). From (9.13) we get the
transformation of the interval dt and the particle velocity in the form

dt′ =
1 − vV/c2

γ(V )
dt, v′ =

v − V

1 − vV/c2
, (9.55)

where, as before, γ(V ) = (1−V 2/c2)−1/2. The substitution of dt′ and v′ of (9.55) into
the expression γ̄(v′)dt′ produces γ̄(v′)dt′ = γ̄(v)dt, wherefrom we get the required
result: L′dt′ = Ldt.

From the latter equality and (9.54) it follows that the momentum p and the
energy E, de�ned by means of LF L,

p⃗ =
∂L

∂v⃗
=

µv⃗√
v2/c2 − 1

, E = p⃗ v⃗ − L =
µc2√

v2/c2 − 1
(9.56)

form, as in the case of bradyons, a four-dimensional vector p � the vector of the
4-dimensional tachyon momentum: p = (p0, p⃗), p0 = E/c. This 4-vector however,
unlike the bradyon momentum vector, is not time-like � it is, due to the inequality
v ≥ c, a space-like vector: from (9.56) we have

p2 := (p0)2 − p⃗ 2 = −µ2c2. (9.57)

In the relativity mechanics the rest mass m of any particle is de�ned through its
squared four-dimensional momentum vector: p2 = (p0)2 − p⃗ 2 = m2c2, i.e. m2 :=
p2/c2. Herefrom, taking into account (9.57), we get a negative value of the squared
"rest mass" of the tachyon,

m2 = −µ2 < 0,



3

i.e. the tachyon "rest mass" is imaginary : m = iµ. However this is not a principal
obstacle, since the tachyons are never in the rest � the tachyon velocity v is always
greater than c. It is worth noting that v is not bounded from the above: at v −→ ∞
the tachyon energy, in accordance with (9.56), tends to null, and its momentum
|p⃗ | tends to µc. At v −→ c both the energy and momentum of tachyons, like the
bradyon energy and momentum, tend to in�nity.

3. Switching Principle.
Let in the reference frame K at time t1 and point x1 a tachyon is emitted with

velocity v, which later at time t2 > t1 is absorbed at point x2. Since v > c, it is
possible to �nd a velocity V , such that in the frame K′ the tachyon absorption occurs
prior the time of emission, i.e. in K′ the causality principle for the process "emission-
absorption" of superluminal particle is violated. From eq. (9.55), rewritten for the
�nite time intervals in the form

∆t′ =
∆t

γ(V )
(1 − vV/c2), (9.58)

we �nd that the above violation can occur if c > V > c2/v, when the sign of the
ratio ∆t′/∆t becomes negative. This shows that the tachyons can not be used as
physical signals: in K′, at c > V > c2/v, the absorber in K becomes emitter, and the
emitter becomes absorber. This switching from emitter to absorber and vice versa
is advanced as a principle for particles with superluminal velocities � the switching
principle [21] (for more details see [22] and e.g. the paper of G.D. Maccarrone and
E. Recami, Nuovo Cimento A 57 (1980) 85).

Physical signals are used to transmit information from a given point and time to
another point, i.e. we control the processes of emission and absorption. The switching
principle states that with individual tachyons this is not possible.

4. Bradyon�tachyon symmetry. ∗

A natural question arises about how the tachyons look-like in reference frames K∗

which move with superluminal velocities V > c. Let us call such frames tachyonic, or
superluminal reference frames. We have readily to underline that K∗ are hypothetical
� we can not attach them to superluminal reference bodies, since such bodies are not
known. Admitting the existence of superluminal frames we have to answer two main
questions: a) what are the transitions from our subluminal K to (the superluminal)
K∗? b) what are the transitions from a given K∗ to another K∗ ′

?
It turned out that the �rst problem has such a theoretical solution which leads

to a remarkable symmetry between bradyons and tachyons in K and tachyons and
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bradyons in K∗. Indeed, assume that the passage K −→ K∗ is described by the
following time and coordinate transformation (here V > c),

ct∗ = 1
γ̄(V )

(ct − V x/c),

x∗ = 1
γ̄(V )

(−V t + x), V > c,
(9.59)

or, in a matrix form,

x∗ = Λ∗(V )x, Λ∗ =
(

1/γ̄(V ) −V/cγ̄(V )
−V/cγ̄(V ) 1/γ̄(V )

)
.

This transformation is obtained from the special Lorentz transformation (9.13) with
the replacement γ(V ) −→ γ̄(V ) and setting V > c. The matrices Λ∗(V ) obey the
relations detΛ∗ = −1 and Λ∗T gΛ∗ = −g. The latter means that they do not enter
the Lorentz group (moreover, they do not form a group). These transformations
convert the time-like 4-dimensional vectors into space-like vectors, and vice versa.
In particular, the tachyon space-like 4-momentum in K is converted to a time-like
vector in K∗.

Let us show that the tachyon velocity v > c in K becomes, for the observer in
K∗, less than c. Indeed, let x in eq. (9.59) be the coordinate of a particle moving
with velocity v = dx/dt. Taking the di�erential of the left and right sides of the �rst
equality in (9.59) we get

dt∗ =
1

γ̄(V )
(1 − vV/c2)dt, (9.60)

afterwhat, di�erentiating the second equality in (9.59), we �nd the relation between
particle velocities in K and K∗,

v∗ :=
dx∗

dt∗
=

v − V

1 − vV/c2
. (9.61)

The analysis of this relation shows, in view of V > c, that if v ≥ c (tachyon or luxon
in K), then v∗ ≤ c (bradyon or luxon in K∗), and vice versa � if v ≤ c (bradyon or
luxon in K), then v∗ ≥ c (tachyon or luxon in K∗). This symmetry is similar (but not
identical) to the mirror symmetry � the more close to (or far below) c is the bradyon
velocity v in K, the more close to (or far above) c is the velocity v∗ of its mirrored
tachyon image in K∗. Thus, under the transition (9.59), the tachyons and bradyons
are interchanged, the luxons remaining luxons. The above picture does not contradict
to the assumption, that the transitions from one superluminal reference frame K∗ to
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another one K∗ ′ be performed by the ordinary Lorentz transformations (9.13), which
means that, for the observers in K∗ (if K∗ exist) the world of subluminal velocities
would look like that for the observers in K (like our world). [Analyse yourselves how
the two successive transformations Λ∗(V2)Λ

∗(V1) will act].

It is worth noting another property of the bradyon-tachyon transformations
(9.59): From (9.60) one can see, that at v = V one has dt∗ = −γ̄dt, i.e. the
time interval dt∗ (the proper time of tachyon) is of opposite sign with respect to dt.
This means time inversion � the time in K∗ �ows in the inverse direction (compared
to that in K). The same is valid for the space intervals (lengths) dx∗ and dx � at
v = V we have dx∗ = −γ̄dx, which means the inversion of the space coordinates.
Let us again recall that the transformation (9.59) is only a theoretical possibility, es-
tablishing a mirror-like symmetry between tachyons and bradyons: in this "mirror"
the tachyon looks like a bradyon, and the bradyon � like a tachyon. At V −→ ∞
the transformation (9.59) is reduced to the replacement of time and space axes with
opposite signs: ct −→ −x∗, x −→ −ct∗.

Historical Notes.
∗ The Special theory of relativity (STR), the basic notions and

properties of which we have considered in the present chapter, is created with the e�orts
of many scientists, among which are (in historical order) H. Lorentz, A. Poincar�e, A.
Einstein and H. Minkowski. A decisive impetus to the investigations in the direction ot
later formulated STR was given by the Michelson experimental result of 1881, and A.
Michelson and E. Morley of 1887 (Amer. J. Sci. 3, 34, 333), about the independence of
light velocity from the source motion. An extensive list of references on STR can be found
in [23].

The Lorentz transformation are published by H. Lorentz in 1904 (Proc. Acad. Sci., Am-
sterdam, 1904, v. 6, p. 809 (Russian translation in [23]) as transformations that leave the
Maxwell equations of electromagnetic �eld invariant. In the form (9.13) they are written
by A. Poincar�e (Comptes Rendues 140, 1504 (1905)), who called them "Lorentz trans-
formations"and derived the law of velocity addition formula (9.18) (the transformations
(9.59): K −→ K∗, for all I know, are not considered). However Lorentz, unlike Einstein in
1905, does not regard the quantities x′, y′, z′ and t′ as physical space coordinates and time.
Einstein (Annalen der Physik 17, 891 (1905)), obtains Lorentz transformations from the
following two postulates (in essence this derivation is given in most of the textbooks, see
e.g. [21]):

1. The laws, according to which the states of physical systems are changing in time, do
not depend on the fact to which of two coordinate systems performing uniform translation
one with respect to another, these state changes are referred.

2. Every light ray is moving with de�nite velocity V in the "rest frame independently
of the fact from a rest or from a moving body this light ray is emitted.
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In his talk in the Saint Louis in 1904 (published in "Bulletin des Science Mathema-
tiques" 28, ser. 2, 302 (1904)) A. Poincar�e formulates the relativity principle in the following
manner: "... the principle of relativity, according to which the laws of physical phenome-
na must be the same for the observer in rest and for the observer, moving with constant
velocity". About the light velocity limit Poincar�e writes in the same article provisionally:
"Based on all of these results, if they will be con�rmed, a completely new mechanics would
arise, which will be characterized �rst of all with the property that no velocity could be
greater than the velocity of light".

From the Lorentz transformations (9.13) it follows that, as we have shown in the main
text, there is a change in the time and space intervals. But ideas and even formulae for such
changes are expressed previously by Fitzgerald (1891: l = l0

√
1 − v2/c2), Lorentz (1892)

and Poincar�e (1902: "The absolute space and absolute time do not exist"). The pseudo
Euclidean structure of the space of events (the relativistic interval, the terms 'proper time',
'world point', and 'world line') is introduced by H. Minkowski in 1907-1908 publications
(see e.g. [23]). The Lagrange function for relativistic particle (9.37) is introduced by Plank
(M. Planck, Verhandl. Deutsch. Phys. Ges., b. 4, s. 136, 1906 (Russian translation in [23])).

It is worth noting (noted also in 1908 by H. Minkowski [23], and e.g. in [21]) that,

transformations of the form similar to the Lorentz transformations (9.13) are obtained

earlier by W. Foigt (G�ott. Nachr., b. 5, s. 41, 1887) in a paper on the Doppler e�ect. The

well known as Einstein formula E = mc2 relating the particle mass and energy also has an

interesting history, which is described e.g. in the Fadner paper (W.L. Fadner, American

Journal of Physics, 56, 114 (1988) [Bulgarian translation: Svetat na �zikata 24 (3), 218

(2001)] .
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